README.md 3.44 KB
Newer Older
1
# Bachelor of Applied Data Science: Data Challenges Unit Resources
2

3
## By Topic
Simon Bowly's avatar
Simon Bowly committed
4

Simon Bowly's avatar
Simon Bowly committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
* [Project-Tools](Project-Tools)
    * [Git](Project-Tools/Git)
* [Python-Jupyter](Python-Jupyter)
* [Pandas-DataFrames](Pandas-DataFrames)
    * [Merging](Pandas-DataFrames/Merging)
    * [Time-Series](Pandas-DataFrames/Time-Series)
    * [Incoming-Survey](Pandas-DataFrames/Incoming-Survey)
* [Visualisation](Visualisation)
* [Machine-Learning](Machine-Learning)
    * [Unsupervised-Methods](Machine-Learning/Unsupervised-Methods)
        * [Principal-Component-Analysis](Machine-Learning/Unsupervised-Methods/Principal-Component-Analysis)
        * [K-Means-Clustering](Machine-Learning/Unsupervised-Methods/K-Means-Clustering)
    * [Supervised-Methods](Machine-Learning/Supervised-Methods)
        * [Regression](Machine-Learning/Supervised-Methods/Regression)
        * [Decision-Trees](Machine-Learning/Supervised-Methods/Decision-Trees)
        * [Support-Vector-Machines](Machine-Learning/Supervised-Methods/Support-Vector-Machines)
        * [K-Nearest-Neighbours](Machine-Learning/Supervised-Methods/K-Nearest-Neighbours)
    * [Ensemble-Methods](Machine-Learning/Ensemble-Methods)
        * [Boosting](Machine-Learning/Ensemble-Methods/Boosting)
* [Topic-Hints](Topic-Hints)
    * [Optimization](Topic-Hints/Optimization)
    * [Brain-Scans](Topic-Hints/Brain-Scans)
    * [Time-Lag-Features](Topic-Hints/Time-Lag-Features)
    * [Image-Features](Topic-Hints/Image-Features)
    * [Stock-Portfolios](Topic-Hints/Stock-Portfolios)

## By Unit

### ADS1001

* Week 1 [Intro to Python 1](Python-Jupyter/01-PythonIntroduction.ipynb)
* Week 2 [Intro to Python 2](Python-Jupyter/02-PythonIntroduction.ipynb)
* Week 3 [Python Modules](Python-Jupyter/03-PythonModules.ipynb)
* Week 4 [Plotting with Matplotlib](Visualisation/04-PlottingMPL_Intro.ipynb)
* Week 5 [Intro to Pandas](Pandas-DataFrames/05-PandasWeather.ipynb)
* Week 6 [Plotting with Seaborn](Visualisation/06_Seaborn.ipynb)
* Week 7 [Aggregating and Grouping Data](Pandas-DataFrames/07-AggregationGrouping.ipynb)
* Week 8 [Merging and Joining Data](Pandas-DataFrames/Merging/04-MergeJoinIntro.ipynb)
* Week 9 [Intro to Linear Regression](Machine-Learning/Supervised-Methods/Regression/03-IntroLinearRegression.ipynb)
* Week 10 [Intro to Linear Regression (Dupe?)](Machine-Learning/Supervised-Methods/Regression/03-IntroLinearRegression.ipynb)
* Week 11 [K Nearest Neighbours (kNN) Classification](Machine-Learning/Supervised-Methods/K-Nearest-Neighbours/12-kNN.ipynb)

### ADS1002

### ADS2001

* Week 2 [Regression Workflow](Machine-Learning/Supervised-Methods/Regression/01-ML_Workflow_Diabetes.ipynb)
* Week 3 [Logistic Regression](Machine-Learning/Supervised-Methods/Regression/02-LogisticRegression_Iris.ipynb)
* Week 4 [Support Vector Machines (SVM)](Machine-Learning/Supervised-Methods/Support-Vector-Machines/03-SVM.ipynb)
* Week 5 [Decision Trees](Machine-Learning/Supervised-Methods/Decision-Trees/04-DecisionTrees.ipynb)
* Week 6 [Random Forests](Machine-Learning/Supervised-Methods/Decision-Trees/05-RandomForest.ipynb)
* Week 7 [Principal Component Analysis (PCA)](Machine-Learning/Unsupervised-Methods/Principal-Component-Analysis/08-PCA.ipynb)
* Week 8 [K-Means Clustering](Machine-Learning/Unsupervised-Methods/K-Means-Clustering/KMeans.ipynb)
* Week 9 [Git](Project-Tools/Git/GIT-CLI-CORE.pdf)
* Week 10 [Advanced Plotting](Visualisation/11-AdvancedPlotting.ipynb)
* Week 11 [Boosting](Machine-Learning/Ensemble-Methods/Boosting/Boosting.ipynb)

### ADS2002