Commit 6dfda007 authored by Simon Clarke's avatar Simon Clarke
Browse files

Draft SGD notebook

parent 31809c31
AGE,SEX,BMI,BP,S1,S2,S3,S4,S5,S6,Y
59,2,32.1,101,157,93.2,38,4,4.8598,87,151
48,1,21.6,87,183,103.2,70,3,3.8918,69,75
72,2,30.5,93,156,93.6,41,4,4.6728,85,141
24,1,25.3,84,198,131.4,40,5,4.8903,89,206
50,1,23,101,192,125.4,52,4,4.2905,80,135
23,1,22.6,89,139,64.8,61,2,4.1897,68,97
36,2,22,90,160,99.6,50,3,3.9512,82,138
66,2,26.2,114,255,185,56,4.55,4.2485,92,63
60,2,32.1,83,179,119.4,42,4,4.4773,94,110
29,1,30,85,180,93.4,43,4,5.3845,88,310
22,1,18.6,97,114,57.6,46,2,3.9512,83,101
56,2,28,85,184,144.8,32,6,3.5835,77,69
53,1,23.7,92,186,109.2,62,3,4.3041,81,179
50,2,26.2,97,186,105.4,49,4,5.0626,88,185
61,1,24,91,202,115.4,72,3,4.2905,73,118
34,2,24.7,118,254,184.2,39,7,5.037,81,171
47,1,30.3,109,207,100.2,70,3,5.2149,98,166
68,2,27.5,111,214,147,39,5,4.9416,91,144
38,1,25.4,84,162,103,42,4,4.4427,87,97
41,1,24.7,83,187,108.2,60,3,4.5433,78,168
35,1,21.1,82,156,87.8,50,3,4.5109,95,68
25,2,24.3,95,162,98.6,54,3,3.8501,87,49
25,1,26,92,187,120.4,56,3,3.9703,88,68
61,2,32,103.67,210,85.2,35,6,6.107,124,245
31,1,29.7,88,167,103.4,48,4,4.3567,78,184
30,2,25.2,83,178,118.4,34,5,4.852,83,202
19,1,19.2,87,124,54,57,2,4.1744,90,137
42,1,31.9,83,158,87.6,53,3,4.4659,101,85
63,1,24.4,73,160,91.4,48,3,4.6347,78,131
67,2,25.8,113,158,54.2,64,2,5.2933,104,283
32,1,30.5,89,182,110.6,56,3,4.3438,89,129
42,1,20.3,71,161,81.2,66,2,4.2341,81,59
58,2,38,103,150,107.2,22,7,4.6444,98,341
57,1,21.7,94,157,58,82,2,4.4427,92,87
53,1,20.5,78,147,84.2,52,3,3.989,75,65
62,2,23.5,80.33,225,112.8,86,2.62,4.8752,96,102
52,1,28.5,110,195,97.2,60,3,5.2417,85,265
46,1,27.4,78,171,88,58,3,4.8283,90,276
48,2,33,123,253,163.6,44,6,5.425,97,252
48,2,27.7,73,191,119.4,46,4,4.852,92,90
50,2,25.6,101,229,162.2,43,5,4.7791,114,100
21,1,20.1,63,135,69,54,3,4.0943,89,55
32,2,25.4,90.33,153,100.4,34,4.5,4.5326,83,61
54,1,24.2,74,204,109,82,2,4.1744,109,92
61,2,32.7,97,177,118.4,29,6,4.9972,87,259
56,2,23.1,104,181,116.4,47,4,4.4773,79,53
33,1,25.3,85,155,85,51,3,4.5539,70,190
27,1,19.6,78,128,68,43,3,4.4427,71,142
67,2,22.5,98,191,119.2,61,3,3.989,86,75
37,2,27.7,93,180,119.4,30,6,5.0304,88,142
58,1,25.7,99,157,91.6,49,3,4.4067,93,155
65,2,27.9,103,159,96.8,42,4,4.6151,86,225
34,1,25.5,93,218,144,57,4,4.4427,88,59
46,1,24.9,115,198,129.6,54,4,4.2767,103,104
35,1,28.7,97,204,126.8,64,3,4.1897,93,182
37,1,21.8,84,184,101,73,3,3.912,93,128
37,1,30.2,87,166,96,40,4.15,5.0106,87,52
41,1,20.5,80,124,48.8,64,2,4.0254,75,37
60,1,20.4,105,198,78.4,99,2,4.6347,79,170
66,2,24,98,236,146.4,58,4,5.0626,96,170
29,1,26,83,141,65.2,64,2,4.0775,83,61
37,2,26.8,79,157,98,28,6,5.0434,96,144
41,2,25.7,83,181,106.6,66,3,3.7377,85,52
39,1,22.9,77,204,143.2,46,4,4.3041,74,128
67,2,24,83,143,77.2,49,3,4.4308,94,71
36,2,24.1,112,193,125,35,6,5.1059,95,163
46,2,24.7,85,174,123.2,30,6,4.6444,96,150
60,2,25,89.67,185,120.8,46,4.02,4.5109,92,97
59,2,23.6,83,165,100,47,4,4.4998,92,160
53,1,22.1,93,134,76.2,46,3,4.0775,96,178
48,1,19.9,91,189,109.6,69,3,3.9512,101,48
48,1,29.5,131,207,132.2,47,4,4.9345,106,270
66,2,26,91,264,146.6,65,4,5.5683,87,202
52,2,24.5,94,217,149.4,48,5,4.585,89,111
52,2,26.6,111,209,126.4,61,3,4.6821,109,85
46,2,23.5,87,181,114.8,44,4,4.7095,98,42
40,2,29,115,97,47.2,35,2.77,4.3041,95,170
22,1,23,73,161,97.8,54,3,3.8286,91,200
50,1,21,88,140,71.8,35,4,5.112,71,252
20,1,22.9,87,191,128.2,53,4,3.8918,85,113
68,1,27.5,107,241,149.6,64,4,4.92,90,143
52,2,24.3,86,197,133.6,44,5,4.5747,91,51
44,1,23.1,87,213,126.4,77,3,3.8712,72,52
38,1,27.3,81,146,81.6,47,3,4.4659,81,210
49,1,22.7,65.33,168,96.2,62,2.71,3.8918,60,65
61,1,33,95,182,114.8,54,3,4.1897,74,141
29,2,19.4,83,152,105.8,39,4,3.5835,83,55
61,1,25.8,98,235,125.8,76,3,5.112,82,134
34,2,22.6,75,166,91.8,60,3,4.2627,108,42
36,1,21.9,89,189,105.2,68,3,4.3694,96,111
52,1,24,83,167,86.6,71,2,3.8501,94,98
61,1,31.2,79,235,156.8,47,5,5.0499,96,164
43,1,26.8,123,193,102.2,67,3,4.7791,94,48
35,1,20.4,65,187,105.6,67,2.79,4.2767,78,96
27,1,24.8,91,189,106.8,69,3,4.1897,69,90
29,1,21,71,156,97,38,4,4.654,90,162
64,2,27.3,109,186,107.6,38,5,5.3083,99,150
41,1,34.6,87.33,205,142.6,41,5,4.6728,110,279
49,2,25.9,91,178,106.6,52,3,4.5747,75,92
48,1,20.4,98,209,139.4,46,5,4.7707,78,83
53,1,28,88,233,143.8,58,4,5.0499,91,128
53,2,22.2,113,197,115.2,67,3,4.3041,100,102
23,1,29,90,216,131.4,65,3,4.585,91,302
65,2,30.2,98,219,160.6,40,5,4.5218,84,198
41,1,32.4,94,171,104.4,56,3,3.9703,76,95
55,2,23.4,83,166,101.6,46,4,4.5218,96,53
22,1,19.3,82,156,93.2,52,3,3.989,71,134
56,1,31,78.67,187,141.4,34,5.5,4.0604,90,144
54,2,30.6,103.33,144,79.8,30,4.8,5.1417,101,232
59,2,25.5,95.33,190,139.4,35,5.43,4.3567,117,81
60,2,23.4,88,153,89.8,58,3,3.2581,95,104
54,1,26.8,87,206,122,68,3,4.382,80,59
25,1,28.3,87,193,128,49,4,4.382,92,246
54,2,27.7,113,200,128.4,37,5,5.1533,113,297
55,1,36.6,113,199,94.4,43,4.63,5.7301,97,258
40,2,26.5,93,236,147,37,7,5.5607,92,229
62,2,31.8,115,199,128.6,44,5,4.8828,98,275
65,1,24.4,120,222,135.6,37,6,5.5094,124,281
33,2,25.4,102,206,141,39,5,4.8675,105,179
53,1,22,94,175,88,59,3,4.9416,98,200
35,1,26.8,98,162,103.6,45,4,4.2047,86,200
66,1,28,101,195,129.2,40,5,4.8598,94,173
62,2,33.9,101,221,156.4,35,6,4.9972,103,180
50,2,29.6,94.33,300,242.4,33,9.09,4.8122,109,84
47,1,28.6,97,164,90.6,56,3,4.4659,88,121
47,2,25.6,94,165,74.8,40,4,5.5255,93,161
24,1,20.7,87,149,80.6,61,2,3.6109,78,99
58,2,26.2,91,217,124.2,71,3,4.6913,68,109
34,1,20.6,87,185,112.2,58,3,4.3041,74,115
51,1,27.9,96,196,122.2,42,5,5.0689,120,268
31,2,35.3,125,187,112.4,48,4,4.8903,109,274
22,1,19.9,75,175,108.6,54,3,4.1271,72,158
53,2,24.4,92,214,146,50,4,4.4998,97,107
37,2,21.4,83,128,69.6,49,3,3.8501,84,83
28,1,30.4,85,198,115.6,67,3,4.3438,80,103
47,1,31.6,84,154,88,30,5.1,5.1985,105,272
23,1,18.8,78,145,72,63,2,3.912,86,85
50,1,31,123,178,105,48,4,4.8283,88,280
58,2,36.7,117,166,93.8,44,4,4.9488,109,336
55,1,32.1,110,164,84.2,42,4,5.2417,90,281
60,2,27.7,107,167,114.6,38,4,4.2767,95,118
41,1,30.8,81,214,152,28,7.6,5.1358,123,317
60,2,27.5,106,229,143.8,51,4,5.1417,91,235
40,1,26.9,92,203,119.8,70,3,4.1897,81,60
57,2,30.7,90,204,147.8,34,6,4.7095,93,174
37,1,38.3,113,165,94.6,53,3,4.4659,79,259
40,2,31.9,95,198,135.6,38,5,4.804,93,178
33,1,35,89,200,130.4,42,4.76,4.9273,101,128
32,2,27.8,89,216,146.2,55,4,4.3041,91,96
35,2,25.9,81,174,102.4,31,6,5.3132,82,126
55,1,32.9,102,164,106.2,41,4,4.4308,89,288
49,1,26,93,183,100.2,64,3,4.5433,88,88
39,2,26.3,115,218,158.2,32,7,4.9345,109,292
60,2,22.3,113,186,125.8,46,4,4.2627,94,71
67,2,28.3,93,204,132.2,49,4,4.7362,92,197
41,2,32,109,251,170.6,49,5,5.0562,103,186
44,1,25.4,95,162,92.6,53,3,4.4067,83,25
48,2,23.3,89.33,212,142.8,46,4.61,4.7536,98,84
45,1,20.3,74.33,190,126.2,49,3.88,4.3041,79,96
47,1,30.4,120,199,120,46,4,5.1059,87,195
46,1,20.6,73,172,107,51,3,4.2485,80,53
36,2,32.3,115,286,199.4,39,7,5.4723,112,217
34,1,29.2,73,172,108.2,49,4,4.3041,91,172
53,2,33.1,117,183,119,48,4,4.382,106,131
61,1,24.6,101,209,106.8,77,3,4.8363,88,214
37,1,20.2,81,162,87.8,63,3,4.0254,88,59
33,2,20.8,84,125,70.2,46,3,3.7842,66,70
68,1,32.8,105.67,205,116.4,40,5.13,5.4931,117,220
49,2,31.9,94,234,155.8,34,7,5.3982,122,268
48,1,23.9,109,232,105.2,37,6,6.107,96,152
55,2,24.5,84,179,105.8,66,3,3.5835,87,47
43,1,22.1,66,134,77.2,45,3,4.0775,80,74
60,2,33,97,217,125.6,45,5,5.4467,112,295
31,2,19,93,137,73,47,3,4.4427,78,101
53,2,27.3,82,119,55,39,3,4.8283,93,151
67,1,22.8,87,166,98.6,52,3,4.3438,92,127
61,2,28.2,106,204,132,52,4,4.6052,96,237
62,1,28.9,87.33,206,127.2,33,6.24,5.4337,99,225
60,1,25.6,87,207,125.8,69,3,4.1109,84,81
42,1,24.9,91,204,141.8,38,5,4.7958,89,151
38,2,26.8,105,181,119.2,37,5,4.8203,91,107
62,1,22.4,79,222,147.4,59,4,4.3567,76,64
61,2,26.9,111,236,172.4,39,6,4.8122,89,138
61,2,23.1,113,186,114.4,47,4,4.8122,105,185
53,1,28.6,88,171,98.8,41,4,5.0499,99,265
28,2,24.7,97,175,99.6,32,5,5.3799,87,101
26,2,30.3,89,218,152.2,31,7,5.1591,82,137
30,1,21.3,87,134,63,63,2,3.6889,66,143
50,1,26.1,109,243,160.6,62,4,4.625,89,141
48,1,20.2,95,187,117.4,53,4,4.4188,85,79
51,1,25.2,103,176,112.2,37,5,4.8978,90,292
47,2,22.5,82,131,66.8,41,3,4.7536,89,178
64,2,23.5,97,203,129,59,3,4.3175,77,91
51,2,25.9,76,240,169,39,6,5.0752,96,116
30,1,20.9,104,152,83.8,47,3,4.6634,97,86
56,2,28.7,99,208,146.4,39,5,4.7274,97,122
42,1,22.1,85,213,138.6,60,4,4.2767,94,72
62,2,26.7,115,183,124,35,5,4.7875,100,129
34,1,31.4,87,149,93.8,46,3,3.8286,77,142
60,1,22.2,104.67,221,105.4,60,3.68,5.6276,93,90
64,1,21,92.33,227,146.8,65,3.49,4.3307,102,158
39,2,21.2,90,182,110.4,60,3,4.0604,98,39
71,2,26.5,105,281,173.6,55,5,5.5683,84,196
48,2,29.2,110,218,151.6,39,6,4.92,98,222
79,2,27,103,169,110.8,37,5,4.6634,110,277
40,1,30.7,99,177,85.4,50,4,5.3375,85,99
49,2,28.8,92,207,140,44,5,4.7449,92,196
51,1,30.6,103,198,106.6,57,3,5.1475,100,202
57,1,30.1,117,202,139.6,42,5,4.625,120,155
59,2,24.7,114,152,104.8,29,5,4.5109,88,77
51,1,27.7,99,229,145.6,69,3,4.2767,77,191
74,1,29.8,101,171,104.8,50,3,4.3944,86,70
67,1,26.7,105,225,135.4,69,3,4.6347,96,73
49,1,19.8,88,188,114.8,57,3,4.3944,93,49
57,1,23.3,88,155,63.6,78,2,4.2047,78,65
56,2,35.1,123,164,95,38,4,5.0434,117,263
52,2,29.7,109,228,162.8,31,8,5.1417,103,248
69,1,29.3,124,223,139,54,4,5.0106,102,296
37,1,20.3,83,185,124.6,38,5,4.7185,88,214
24,1,22.5,89,141,68,52,3,4.654,84,185
55,2,22.7,93,154,94.2,53,3,3.5264,75,78
36,1,22.8,87,178,116,41,4,4.654,82,93
42,2,24,107,150,85,44,3,4.654,96,252
21,1,24.2,76,147,77,53,3,4.4427,79,150
41,1,20.2,62,153,89,50,3,4.2485,89,77
57,2,29.4,109,160,87.6,31,5,5.3327,92,208
20,2,22.1,87,171,99.6,58,3,4.2047,78,77
67,2,23.6,111.33,189,105.4,70,2.7,4.2195,93,108
34,1,25.2,77,189,120.6,53,4,4.3438,79,160
41,2,24.9,86,192,115,61,3,4.382,94,53
38,2,33,78,301,215,50,6.02,5.193,108,220
51,1,23.5,101,195,121,51,4,4.7449,94,154
52,2,26.4,91.33,218,152,39,5.59,4.9053,99,259
67,1,29.8,80,172,93.4,63,3,4.3567,82,90
61,1,30,108,194,100,52,3.73,5.3471,105,246
67,2,25,111.67,146,93.4,33,4.42,4.585,103,124
56,1,27,105,247,160.6,54,5,5.0876,94,67
64,1,20,74.67,189,114.8,62,3.05,4.1109,91,72
58,2,25.5,112,163,110.6,29,6,4.7622,86,257
55,1,28.2,91,250,140.2,67,4,5.366,103,262
62,2,33.3,114,182,114,38,5,5.0106,96,275
57,2,25.6,96,200,133,52,3.85,4.3175,105,177
20,2,24.2,88,126,72.2,45,3,3.7842,74,71
53,2,22.1,98,165,105.2,47,4,4.1589,81,47
32,2,31.4,89,153,84.2,56,3,4.1589,90,187
41,1,23.1,86,148,78,58,3,4.0943,60,125
60,1,23.4,76.67,247,148,65,3.8,5.1358,77,78
26,1,18.8,83,191,103.6,69,3,4.5218,69,51
37,1,30.8,112,282,197.2,43,7,5.3423,101,258
45,1,32,110,224,134.2,45,5,5.4116,93,215
67,1,31.6,116,179,90.4,41,4,5.4723,100,303
34,2,35.5,120,233,146.6,34,7,5.5683,101,243
50,1,31.9,78.33,207,149.2,38,5.45,4.5951,84,91
71,1,29.5,97,227,151.6,45,5,5.0239,108,150
57,2,31.6,117,225,107.6,40,6,5.9584,113,310
49,1,20.3,93,184,103,61,3,4.6052,93,153
35,1,41.3,81,168,102.8,37,5,4.9488,94,346
41,2,21.2,102,184,100.4,64,3,4.585,79,63
70,2,24.1,82.33,194,149.2,31,6.26,4.2341,105,89
52,1,23,107,179,123.7,42.5,4.21,4.1589,93,50
60,1,25.6,78,195,95.4,91,2,3.7612,87,39
62,1,22.5,125,215,99,98,2,4.4998,95,103
44,2,38.2,123,201,126.6,44,5,5.0239,92,308
28,2,19.2,81,155,94.6,51,3,3.8501,87,116
58,2,29,85,156,109.2,36,4,3.989,86,145
39,2,24,89.67,190,113.6,52,3.65,4.804,101,74
34,2,20.6,98,183,92,83,2,3.6889,92,45
65,1,26.3,70,244,166.2,51,5,4.8978,98,115
66,2,34.6,115,204,139.4,36,6,4.9628,109,264
51,1,23.4,87,220,108.8,93,2,4.5109,82,87
50,2,29.2,119,162,85.2,54,3,4.7362,95,202
59,2,27.2,107,158,102,39,4,4.4427,93,127
52,1,27,78.33,134,73,44,3.05,4.4427,69,182
69,2,24.5,108,243,136.4,40,6,5.8081,100,241
53,1,24.1,105,184,113.4,46,4,4.8122,95,66
47,2,25.3,98,173,105.6,44,4,4.7622,108,94
52,1,28.8,113,280,174,67,4,5.273,86,283
39,1,20.9,95,150,65.6,68,2,4.4067,95,64
67,2,23,70,184,128,35,5,4.654,99,102
59,2,24.1,96,170,98.6,54,3,4.4659,85,200
51,2,28.1,106,202,122.2,55,4,4.8203,87,265
23,2,18,78,171,96,48,4,4.9053,92,94
68,1,25.9,93,253,181.2,53,5,4.5433,98,230
44,1,21.5,85,157,92.2,55,3,3.8918,84,181
60,2,24.3,103,141,86.6,33,4,4.6728,78,156
52,1,24.5,90,198,129,29,7,5.2983,86,233
38,1,21.3,72,165,60.2,88,2,4.4308,90,60
61,1,25.8,90,280,195.4,55,5,4.9972,90,219
68,2,24.8,101,221,151.4,60,4,3.8712,87,80
28,2,31.5,83,228,149.4,38,6,5.3132,83,68
65,2,33.5,102,190,126.2,35,5,4.9698,102,332
69,1,28.1,113,234,142.8,52,4,5.2781,77,248
51,1,24.3,85.33,153,71.6,71,2.15,3.9512,82,84
29,1,35,98.33,204,142.6,50,4.08,4.0431,91,200
55,2,23.5,93,177,126.8,41,4,3.8286,83,55
34,2,30,83,185,107.2,53,3,4.8203,92,85
67,1,20.7,83,170,99.8,59,3,4.0254,77,89
49,1,25.6,76,161,99.8,51,3,3.9318,78,31
55,2,22.9,81,123,67.2,41,3,4.3041,88,129
59,2,25.1,90,163,101.4,46,4,4.3567,91,83
53,1,33.2,82.67,186,106.8,46,4.04,5.112,102,275
48,2,24.1,110,209,134.6,58,4,4.4067,100,65
52,1,29.5,104.33,211,132.8,49,4.31,4.9836,98,198
69,1,29.6,122,231,128.4,56,4,5.451,86,236
60,2,22.8,110,245,189.8,39,6,4.3944,88,253
46,2,22.7,83,183,125.8,32,6,4.8363,75,124
51,2,26.2,101,161,99.6,48,3,4.2047,88,44
67,2,23.5,96,207,138.2,42,5,4.8978,111,172
49,1,22.1,85,136,63.4,62,2.19,3.9703,72,114
46,2,26.5,94,247,160.2,59,4,4.9345,111,142
47,1,32.4,105,188,125,46,4.09,4.4427,99,109
75,1,30.1,78,222,154.2,44,5.05,4.7791,97,180
28,1,24.2,93,174,106.4,54,3,4.2195,84,144
65,2,31.3,110,213,128,47,5,5.247,91,163
42,1,30.1,91,182,114.8,49,4,4.5109,82,147
51,1,24.5,79,212,128.6,65,3,4.5218,91,97
53,2,27.7,95,190,101.8,41,5,5.4638,101,220
54,1,23.2,110.67,238,162.8,48,4.96,4.9127,108,190
73,1,27,102,211,121,67,3,4.7449,99,109
54,1,26.8,108,176,80.6,67,3,4.9558,106,191
42,1,29.2,93,249,174.2,45,6,5.0039,92,122
75,1,31.2,117.67,229,138.8,29,7.9,5.7236,106,230
55,2,32.1,112.67,207,92.4,25,8.28,6.1048,111,242
68,2,25.7,109,233,112.6,35,7,6.0568,105,248
57,1,26.9,98,246,165.2,38,7,5.366,96,249
48,1,31.4,75.33,242,151.6,38,6.37,5.5683,103,192
61,2,25.6,85,184,116.2,39,5,4.9698,98,131
69,1,37,103,207,131.4,55,4,4.6347,90,237
38,1,32.6,77,168,100.6,47,4,4.625,96,78
45,2,21.2,94,169,96.8,55,3,4.4543,102,135
51,2,29.2,107,187,139,32,6,4.382,95,244
71,2,24,84,138,85.8,39,4,4.1897,90,199
57,1,36.1,117,181,108.2,34,5,5.2679,100,270
56,2,25.8,103,177,114.4,34,5,4.9628,99,164
32,2,22,88,137,78.6,48,3,3.9512,78,72
50,1,21.9,91,190,111.2,67,3,4.0775,77,96
43,1,34.3,84,256,172.6,33,8,5.5294,104,306
54,2,25.2,115,181,120,39,5,4.7005,92,91
31,1,23.3,85,190,130.8,43,4,4.3944,77,214
56,1,25.7,80,244,151.6,59,4,5.118,95,95
44,1,25.1,133,182,113,55,3,4.2485,84,216
57,2,31.9,111,173,116.2,41,4,4.3694,87,263
64,2,28.4,111,184,127,41,4,4.382,97,178
43,1,28.1,121,192,121,60,3,4.0073,93,113
19,1,25.3,83,225,156.6,46,5,4.7185,84,200
71,2,26.1,85,220,152.4,47,5,4.6347,91,139
50,2,28,104,282,196.8,44,6,5.3279,95,139
59,2,23.6,73,180,107.4,51,4,4.6821,84,88
57,1,24.5,93,186,96.6,71,3,4.5218,91,148
49,2,21,82,119,85.4,23,5,3.9703,74,88
41,2,32,126,198,104.2,49,4,5.4116,124,243
25,2,22.6,85,130,71,48,3,4.0073,81,71
52,2,19.7,81,152,53.4,82,2,4.4188,82,77
34,1,21.2,84,254,113.4,52,5,6.0936,92,109
42,2,30.6,101,269,172.2,50,5,5.4553,106,272
28,2,25.5,99,162,101.6,46,4,4.2767,94,60
47,2,23.3,90,195,125.8,54,4,4.3307,73,54
32,2,31,100,177,96.2,45,4,5.1874,77,221
43,1,18.5,87,163,93.6,61,2.67,3.7377,80,90
59,2,26.9,104,194,126.6,43,5,4.804,106,311
53,1,28.3,101,179,107,48,4,4.7875,101,281
60,1,25.7,103,158,84.6,64,2,3.8501,97,182
54,2,36.1,115,163,98.4,43,4,4.6821,101,321
35,2,24.1,94.67,155,97.4,32,4.84,4.852,94,58
49,2,25.8,89,182,118.6,39,5,4.804,115,262
58,1,22.8,91,196,118.8,48,4,4.9836,115,206
36,2,39.1,90,219,135.8,38,6,5.4205,103,233
46,2,42.2,99,211,137,44,5,5.0106,99,242
44,2,26.6,99,205,109,43,5,5.5797,111,123
46,1,29.9,83,171,113,38,4.5,4.585,98,167
54,1,21,78,188,107.4,70,3,3.9703,73,63
63,2,25.5,109,226,103.2,46,5,5.9506,87,197
41,2,24.2,90,199,123.6,57,4,4.5218,86,71
28,1,25.4,93,141,79,49,3,4.1744,91,168
19,1,23.2,75,143,70.4,52,3,4.6347,72,140
61,2,26.1,126,215,129.8,57,4,4.9488,96,217
48,1,32.7,93,276,198.6,43,6.42,5.1475,91,121
54,2,27.3,100,200,144,33,6,4.7449,76,235
53,2,26.6,93,185,122.4,36,5,4.8903,82,245
48,1,22.8,101,110,41.6,56,2,4.1271,97,40
53,1,28.8,111.67,145,87.2,46,3.15,4.0775,85,52
29,2,18.1,73,158,99,41,4,4.4998,78,104
62,1,32,88,172,69,38,4,5.7838,100,132
50,2,23.7,92,166,97,52,3,4.4427,93,88
58,2,23.6,96,257,171,59,4,4.9053,82,69
55,2,24.6,109,143,76.4,51,3,4.3567,88,219
54,1,22.6,90,183,104.2,64,3,4.3041,92,72
36,1,27.8,73,153,104.4,42,4,3.4965,73,201
63,2,24.1,111,184,112.2,44,4,4.9345,82,110
47,2,26.5,70,181,104.8,63,3,4.1897,70,51
51,2,32.8,112,202,100.6,37,5,5.7746,109,277
42,1,19.9,76,146,83.2,55,3,3.6636,79,63
37,2,23.6,94,205,138.8,53,4,4.1897,107,118
28,1,22.1,82,168,100.6,54,3,4.2047,86,69
58,1,28.1,111,198,80.6,31,6,6.0684,93,273
32,1,26.5,86,184,101.6,53,4,4.9904,78,258
25,2,23.5,88,143,80.8,55,3,3.5835,83,43
63,1,26,85.67,155,78.2,46,3.37,5.037,97,198
52,1,27.8,85,219,136,49,4,5.1358,75,242
65,2,28.5,109,201,123,46,4,5.0752,96,232
42,1,30.6,121,176,92.8,69,3,4.2627,89,175
53,1,22.2,78,164,81,70,2,4.1744,101,93
79,2,23.3,88,186,128.4,33,6,4.8122,102,168
43,1,35.4,93,185,100.2,44,4,5.3181,101,275
44,1,31.4,115,165,97.6,52,3,4.3438,89,293
62,2,37.8,119,113,51,31,4,5.0434,84,281
33,1,18.9,70,162,91.8,59,3,4.0254,58,72
56,1,35,79.33,195,140.8,42,4.64,4.1109,96,140
66,1,21.7,126,212,127.8,45,4.71,5.2781,101,189
34,2,25.3,111,230,162,39,6,4.9767,90,181
46,2,23.8,97,224,139.2,42,5,5.366,81,209
50,1,31.8,82,136,69.2,55,2,4.0775,85,136
69,1,34.3,113,200,123.8,54,4,4.7095,112,261
34,1,26.3,87,197,120,63,3,4.2485,96,113
71,2,27,93.33,269,190.2,41,6.56,5.2417,93,131
47,1,27.2,80,208,145.6,38,6,4.804,92,174
41,1,33.8,123.33,187,127,45,4.16,4.3175,100,257
34,1,33,73,178,114.6,51,3.49,4.1271,92,55
51,1,24.1,87,261,175.6,69,4,4.4067,93,84
43,1,21.3,79,141,78.8,53,3,3.8286,90,42
55,1,23,94.67,190,137.6,38,5,4.2767,106,146
59,2,27.9,101,218,144.2,38,6,5.1874,95,212
27,2,33.6,110,246,156.6,57,4,5.0876,89,233
51,2,22.7,103,217,162.4,30,7,4.8122,80,91
49,2,27.4,89,177,113,37,5,4.9053,97,111
27,1,22.6,71,116,43.4,56,2,4.4188,79,152
57,2,23.2,107.33,231,159.4,41,5.63,5.0304,112,120
39,2,26.9,93,136,75.4,48,3,4.1431,99,67
62,2,34.6,120,215,129.2,43,5,5.366,123,310
37,1,23.3,88,223,142,65,3.4,4.3567,82,94
46,1,21.1,80,205,144.4,42,5,4.5326,87,183
68,2,23.5,101,162,85.4,59,3,4.4773,91,66
51,1,31.5,93,231,144,49,4.7,5.2523,117,173
41,1,20.8,86,223,128.2,83,3,4.0775,89,72
53,1,26.5,97,193,122.4,58,3,4.1431,99,49
45,1,24.2,83,177,118.4,45,4,4.2195,82,64
33,1,19.5,80,171,85.4,75,2,3.9703,80,48
60,2,28.2,112,185,113.8,42,4,4.9836,93,178
47,2,24.9,75,225,166,42,5,4.4427,102,104
60,2,24.9,99.67,162,106.6,43,3.77,4.1271,95,132
36,1,30,95,201,125.2,42,4.79,5.1299,85,220
36,1,19.6,71,250,133.2,97,3,4.5951,92,57
\ No newline at end of file
%% Cell type:markdown id: tags:
# Gradient Descent
%% Cell type:markdown id: tags:
Gradient descent algorithms underlie most of the optimization in Machine Learning. In this notebook we will go through some simple examples of how gradient descent is implemented, and the application of this to linear regression.
%% Cell type:markdown id: tags:
## Contents
* Vanilla Gradient Descent
* Application to Linear Regression
* Exercises
%% Cell type:markdown id: tags:
## Vanilla Gradient Descent
%% Cell type:markdown id: tags:
Consider that we have $n$ independent features, which are denoted by $x_1, \dots, x_n$, and a function $V(x_1,\dots,x_n)$ which we want to minimize. If we have have a function $W(x_1,\dots,x_n)$ that we want to maximize, then let $V = -W$ and minimizing $V$ is equivalent to maximizing $W$.
Since the name includes gradient, we first need to define the gradient. This is simply a vector which consists of all the first partial derivatives of the function $V$:
$$
\nabla V ({\textbf x}) = \left( \frac{\partial V}{\partial x_1}, \dots, \frac{\partial V}{\partial x_n}\right).
$$
Recall that the partial derivative simply corresponds to the derivative with respect to that variable, with all other variables held constant.
The first observation that we can make about a function that we want to minimize is that the gradient of the function at a point is in the direction that the function increases fastest. Hence, in the opposite direction the function will **decrease** the fastest. Therefore the most sensible direction to minimize the function is in the opposite direction to the gradient, and consequently we can let
$$
{\textbf x}^{(n+1)} = {\textbf x}^{(n)} - \eta \nabla V ({\textbf x}^{(n)}).
$$
This forms the basis of the gradient descent method, and the parameter $\eta$ is called the learning rate.
The following short function implements gradient descent. It takes as input a function which calculates the gradient, a starting point, a learning rate, the number of iterations to take and the tolerance. Once the increments for the points decrease by less than the tolerance the algorithm returns.
%% Cell type:code id: tags:
``` python
import numpy as np
import matplotlib.pyplot as plt
def gradient_descent(gradient, start, learn_rate, n_iter=50, tolerance=1.e-6):
vector = start
for n in range(n_iter):
diff = -learn_rate * gradient(vector)
if np.sum(np.abs(diff)) <= tolerance:
break
vector = vector+diff
return vector
```
%% Cell type:markdown id: tags:
To implement this method which uses as input the gradient of the quadratic function $V=x^2$. In this case the gradient is just the scalar $2x$. We do one iteration on each call to the gradient descent function, so as we can plot the evolution of the updates. In this case for a small learning rate, the solution converges monotonically to the minimum at $x=0$.
%% Cell type:code id: tags:
``` python
quad_grad = lambda v: 2 * v
quad = lambda v: v**2
xa = np.zeros((21))
xs = 5
xa[0] = xs
lrate = 0.1
for ix in range(20):
xc = gradient_descent(quad_grad,xs,lrate,n_iter=1)
xa[ix+1] = xc
xs = xc
xf = np.linspace(-6,6)
plt.plot(xa, quad(xa), 'r.-')
plt.plot(xf, quad(xf))
```
%%%% Output: execute_result
[<matplotlib.lines.Line2D at 0x7ff798458af0>]
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
If we make the learning rate larger, the iterations now oscillate between either side of the function, and the convergence is much slower. If the learning rate is larger than 1 for this example, the iterations will diverge.
%% Cell type:code id: tags:
``` python
xa = np.zeros((21))
xs = 5
xa[0] = xs
lrate = .9
for ix in range(20):
xc = gradient_descent(quad_grad,xs,lrate,n_iter=1)
xa[ix+1] = xc
xs = xc
xf = np.linspace(-6,6)
plt.plot(xa, quad(xa), 'r.-')
plt.plot(xf, quad(xf))
```
%%%% Output: execute_result
[<matplotlib.lines.Line2D at 0x7ff768095f70>]
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
One problem that often occurs with gradient descent is that the solution can converge to a local minimum. For example, for the quartic function below we see that the solution converges to the local minimum at $x\approx 1$. Whereas for a learning rate of half the given value the solution will converge to the global minimum.
%% Cell type:code id: tags:
``` python
quart_grad = lambda x: 4*x**3+6*x**2-6*x-2
quart = lambda x: x**4+2*x**3-3*x**2-2*x+1
xa = np.zeros((21))
xs = -3
xa[0] = xs
lrate = 0.1
for ix in range(20):
xc = gradient_descent(quart_grad,xs,lrate,n_iter=1)
xa[ix+1] = xc
xs = xc
xf = np.linspace(-4,4)
plt.plot(xa, quart(xa), 'r.-')
plt.plot(xf, quart(xf))
plt.ylim(-20,20)
```
%%%% Output: execute_result
(-20.0, 20.0)
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags: