# Bachelor of Applied Data Science: Data Challenges Unit Resources ## Sections by Topic * [Project Tools](Project-Tools) * [Python & Jupyter](Python-Jupyter) * [Pandas & DataFrames](Pandas-DataFrames) * [Visualisation](Visualisation) * [Machine Learning](Machine-Learning) * [Unsupervised Methods](Machine-Learning/Unsupervised-Methods) * [Supervised Methods](Machine-Learning/Supervised-Methods) * [Regression](Machine-Learning/Supervised-Methods/Regression) * [Decision Trees](Machine-Learning/Supervised-Methods/Decision-Trees) * [Ensemble Methods](Machine-Learning/Ensemble-Methods) * [Topic Hints](Topic-Hints) * [Optimization](Topic-Hints/Optimization) * [Brain Scans](Topic-Hints/Brain-Scans) * [Time Lag Features](Topic-Hints/Time-Lag-Features) * [Image Features](Topic-Hints/Image-Features) * [Stock Portfolios](Topic-Hints/Stock-Portfolios) ## Weekly Notebooks by Unit ### ADS1001 * Week 1 [Intro to Python 1](Python-Jupyter/01-PythonIntroduction.ipynb) * Week 2 [Intro to Python 2](Python-Jupyter/02-PythonIntroduction.ipynb) * Week 3 [Python Modules](Python-Jupyter/03-PythonModules.ipynb) * Week 4 [Plotting with Matplotlib](Visualisation/Matplotlib-Intro.ipynb) * Week 5 [Intro to Pandas](Pandas-DataFrames/05-PandasWeather.ipynb) * Week 6 [Plotting with Seaborn](Visualisation/Seaborn.ipynb) * Week 7 [Aggregating and Grouping Data](Pandas-DataFrames/07-AggregationGrouping.ipynb) * Week 8 [Merging and Joining Data](Pandas-DataFrames/Merging/MergeJoinIntro.ipynb) * Week 9 [Intro to Linear Regression](Machine-Learning/Supervised-Methods/Regression/03-IntroLinearRegression.ipynb) * Week 10 [Intro to Linear Regression](Machine-Learning/Supervised-Methods/Regression/03-IntroLinearRegression.ipynb) * Week 11 [K Nearest Neighbours (kNN) Classification](Machine-Learning/Supervised-Methods/K-Nearest-Neighbours.ipynb) ### ADS1002 ### ADS2001 * Week 2 [Regression Workflow](Machine-Learning/Supervised-Methods/Regression/01-ML_Workflow_Diabetes.ipynb) * Week 3 [Logistic Regression](Machine-Learning/Supervised-Methods/Regression/02-LogisticRegression_Iris.ipynb) * Week 4 [Support Vector Machines (SVM)](Machine-Learning/Supervised-Methods/Support-Vector-Machines.ipynb) * Week 5 [Decision Trees](Machine-Learning/Supervised-Methods/Decision-Trees/DecisionTrees.ipynb) * Week 6 [Random Forests](Machine-Learning/Supervised-Methods/Decision-Trees/RandomForests.ipynb) * Week 7 [Principal Component Analysis (PCA)](Machine-Learning/Unsupervised-Methods/Principal-Component-Analysis.ipynb) * Week 8 [K-Means Clustering](Machine-Learning/Unsupervised-Methods/K-Means-Clustering.ipynb) * Week 9 [Git](Project-Tools/GIT-CLI-CORE.pdf) * Week 10 [Advanced Plotting](Visualisation/AdvancedPlotting.ipynb) * Week 11 [Boosting](Machine-Learning/Ensemble-Methods/Boosting.ipynb) ### ADS2002