Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Sean Solari
exPAM
Commits
54019615
Commit
54019615
authored
May 12, 2022
by
Sean Solari
Browse files
Bug fix for multiple -d flags
parent
e245f6ee
Changes
4
Hide whitespace changes
Inline
Side-by-side
.gitignore
View file @
54019615
...
...
@@ -23,6 +23,10 @@ results/
*/expam.egg*
./expam/
src/benchmark/database_access_profiling/data
src/benchmark/database_access_profiling/raw
# Compiled C files.
src/expam/ext/kmers/_build/src
src/expam/ext/map/_build/src
...
...
src/benchmark/database_access_profiling/analyse_raw_output.py
0 → 100755
View file @
54019615
#!/usr/bin/env python3
import
os
from
typing
import
List
import
matplotlib.pyplot
as
plt
import
numpy
as
np
from
tqdm
import
tqdm
def
_count_file_lines
(
file
):
with
open
(
file
,
'r'
)
as
f
:
for
i
,
line
in
enumerate
(
f
):
pass
return
i
def
load_histogram_counts
(
file
):
data
=
[]
with
open
(
file
,
'r'
)
as
f
:
for
line
in
f
:
parts
=
line
.
strip
().
split
(
','
)
if
parts
:
data
.
append
(
tuple
(
int
(
v
)
for
v
in
parts
))
return
data
def
_format_compressed_form
(
node
:
str
,
count_str
:
str
):
return
int
(
node
.
lstrip
(
"p"
)),
int
(
count_str
)
def
yield_output
(
file
):
n_lines
=
_count_file_lines
(
file
)
with
open
(
file
,
'r'
)
as
f
:
for
line
in
tqdm
(
f
,
total
=
n_lines
):
data
=
line
.
strip
().
split
(
'
\t
'
)
if
data
[
0
]
!=
"U"
and
len
(
data
)
==
5
:
yield
data
[
0
],
(
_format_compressed_form
(
*
v
.
split
(
":"
))
for
v
in
data
[
4
].
split
(
" "
))
def
histogram_database_access
(
file
):
c_counts
=
{}
s_counts
=
{}
max_node
=
0
for
classification_type
,
output
in
yield_output
(
file
):
store
=
c_counts
if
classification_type
==
"C"
else
s_counts
for
node
,
count
in
output
:
max_node
=
max
(
node
,
max_node
)
try
:
store
[
node
]
+=
count
except
KeyError
:
store
[
node
]
=
count
return
c_counts
,
s_counts
def
sort_dict
(
node_to_counts
:
dict
)
->
List
[
tuple
]:
as_list
=
list
(
node_to_counts
.
items
())
sorted_list
=
sorted
(
as_list
,
key
=
lambda
v
:
v
[
0
])
return
sorted_list
def
record_counts
(
file
,
c_counts
:
List
[
tuple
],
s_counts
:
List
[
tuple
]):
out_dir
=
os
.
path
.
basename
(
file
).
rstrip
(
".csv"
)
try
:
os
.
mkdir
(
os
.
path
.
join
(
'data'
,
out_dir
))
except
OSError
:
pass
c_file
=
os
.
path
.
join
(
'data'
,
out_dir
,
'c_counts.csv'
)
s_file
=
os
.
path
.
join
(
'data'
,
out_dir
,
's_counts.csv'
)
with
open
(
c_file
,
'w'
)
as
f
:
for
v
in
c_counts
:
f
.
write
(
"%d,%d
\n
"
%
v
)
with
open
(
s_file
,
'w'
)
as
f
:
for
v
in
s_counts
:
f
.
write
(
"%d,%d
\n
"
%
v
)
return
os
.
path
.
join
(
'data'
,
out_dir
)
def
weighted_percentile
(
x
:
np
.
ndarray
,
weights
:
np
.
ndarray
,
quantiles
:
list
):
quantiles
=
np
.
array
(
quantiles
)
/
sum
(
quantiles
)
weighted_quantiles
=
np
.
cumsum
(
weights
)
-
0.5
*
weights
weighted_quantiles
/=
np
.
sum
(
weights
)
return
np
.
interp
(
quantiles
,
weighted_quantiles
,
x
)
def
draw_histogram
(
hist_tuples
:
List
[
tuple
],
out_file
:
str
):
x
,
weights
=
[],
[]
for
v
in
hist_tuples
:
x
.
append
(
v
[
0
])
weights
.
append
(
v
[
1
])
x
=
np
.
array
(
x
)
weights
=
np
.
array
(
weights
)
q25
,
q75
=
weighted_percentile
(
x
,
weights
,
[
25
,
75
])
bin_width
=
(
q75
-
q25
)
*
len
(
x
)
**
(
-
1
/
3
)
bins
=
round
((
x
.
max
()
-
x
.
min
())
/
bin_width
)
plt
.
hist
(
x
,
bins
=
bins
,
weights
=
weights
,
density
=
True
)
plt
.
grid
()
plt
.
savefig
(
out_file
)
plt
.
close
()
def
main
():
in_dir
=
"raw"
files
=
[
os
.
path
.
join
(
in_dir
,
f
)
for
f
in
os
.
listdir
(
in_dir
)
if
not
f
.
startswith
(
"."
)]
for
file
in
files
:
count_dir
=
os
.
path
.
join
(
'data'
,
os
.
path
.
basename
(
file
).
rstrip
(
".csv"
))
c_counts_dir
=
os
.
path
.
join
(
count_dir
,
"c_counts.csv"
)
s_counts_dir
=
os
.
path
.
join
(
count_dir
,
"s_counts.csv"
)
if
os
.
path
.
exists
(
c_counts_dir
)
and
os
.
path
.
exists
(
s_counts_dir
):
print
(
"Loading counts for %s..."
%
file
)
c_counts_list
=
load_histogram_counts
(
c_counts_dir
)
s_counts_list
=
load_histogram_counts
(
s_counts_dir
)
else
:
print
(
"Analysing output for %s..."
%
file
)
c_counts
,
s_counts
=
histogram_database_access
(
file
)
c_counts_list
=
sort_dict
(
c_counts
)
s_counts_list
=
sort_dict
(
s_counts
)
count_dir
=
record_counts
(
file
,
c_counts_list
,
s_counts_list
)
print
(
"Histogramming c..."
)
draw_histogram
(
c_counts_list
,
os
.
path
.
join
(
count_dir
,
'c.png'
))
print
(
"Histogramming s..."
)
draw_histogram
(
s_counts_list
,
os
.
path
.
join
(
count_dir
,
's.png'
))
if
__name__
==
"__main__"
:
main
()
src/expam/__init__.py
View file @
54019615
__version__
=
(
1
,
0
,
6
)
__version__
=
(
1
,
0
,
7
)
src/expam/classify/classify.py
View file @
54019615
...
...
@@ -393,6 +393,8 @@ class Distribution:
return
match_ind
def
prepare_queue
(
self
,
paired_end
=
False
):
file_queue
=
[]
for
path
in
self
.
read_paths
:
# Create a list of all the files containing reads to be processed.
file_list
=
[
...
...
@@ -401,8 +403,6 @@ class Distribution:
if
re
.
match
(
r
"(\S+)\.(?:fa|fna|ffn|fq|fasta|fastq)(?:\.tar)*(?:\.gz)*$"
,
file_name
)
]
file_queue
=
[]
if
paired_end
:
# This implies path is a folder, not a file.
while
file_list
:
next_file
=
file_list
.
pop
()
...
...
@@ -412,7 +412,6 @@ class Distribution:
paired_file
=
file_list
.
pop
(
match_ind
)
file_queue
.
append
((
os
.
path
.
join
(
path
,
next_file
),
os
.
path
.
join
(
path
,
paired_file
)))
else
:
for
file_name
in
file_list
:
if
os
.
path
.
isfile
(
file_name
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment